XYL

Xylazine Test (Urine) Dip Card

A rapid test for the qualitative detection of Xylazine in human urine. For Forensic use only.

INTENDED USE

The **Xylazine Test (Urine) Dip Card** is a lateral flow chromatographic immunoassay for the detection of Xylazine in human urine.

Test	Calibrator	Cut-off	
Xylazine (XYL)	Xylazine	50 ng/ml	

This assay provides only a preliminary analytical test result. A more specific alternate chemical method must be used to obtain a confirmed analytical result. Gas chromatography/mass spectrometry (GC/MS) is the preferred confirmatory method. Clinical consideration and professional judgment should be applied to any drug of abuse test result, particularly when preliminary positive results are used.

SUMMARY

Xylazine (colloquially known as tranq/tranq dope) is a non-opioid tranquilizer used as a sedative, analgesic, and muscle relaxant in animals such as horses and cattle^{1,3}. In humans, it could cause central nervous system depression, respiratory depression, bradycardia, hypotension, and even death¹. Most of the non-fatal cases required medical intervention. In recent years, xylazine has emerged as an adulterant in recreational drugs such as heroin². Chronic use of xylazine is reported to be associated with physical deterioration and skin ulceration. Combining xylazine with other drugs that cause central nervous system depression compounds the sedative effects and can increase the risk of overdose and death².

PRINCIPLE

The Xylazine Test (Urine) Dip Card is a rapid chromatographic

immunoassay based on the principle of competitive binding. Drugs which may be present in the urine specimen compete against the drug conjugate for binding sites on the antibody.

During testing, a urine specimen migrates upward by capillary action. Xylazine, if present in the urine specimen below 50 ng/ml, will not saturate the binding sites of the antibody coated particles in the test dip card. The antibody coated particles will then be captured by immobilized Xylazine conjugate and a visible colored line will show up in the test line region. The colored line will not form in the test line region if the Xylazine level exceeds 50 ng/ml because it will saturate all the binding sites of anti-Xylazine antibodies.

A drug-positive urine specimen will not generate a colored line in the test line region, while a drug-negative urine specimen or a specimen containing a drug concentration less than the cut-off will generate a line in the test line region. To serve as a procedural control, a colored line will always appear at the control line region indicating that proper volume of specimen has been added and membrane wicking has occurred.

REAGENTS

The test dip card contains mouse monoclonal anti-Xylazine antibody-coupled particles and Xylazine-protein conjugate. A goat antibody is employed in the control line system.

PRECAUTIONS

- For Forensic use only. Do not use after the expiration date.
- The test dip card should remain in the sealed pouch until use.
- All specimens should be considered potentially hazardous and handled in

the same manner as an infectious agent.

 The used test dip card should be discarded according to federal, state and local regulations.

STORAGE AND STABILITY

The kit can be stored at room temperature or refrigerated (2-30°C). The test dip card is stable through the expiration date printed on the sealed pouch. The test dip card must remain in the sealed pouch until use. **DO NOT FREEZE.** Do not use beyond the expiration date.

SPECIMEN COLLECTION AND PREPARATION

Urine Assay

The urine specimen must be collected in a clean and dry container. Urine collected at any time of the day may be used. Urine specimens exhibiting visible particles should be centrifuged, filtered, or allowed to settle to obtain clear specimen for testing.

Specimen Storage

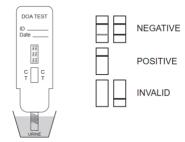
Urine specimens may be stored at 2-8°C for up to 48 hours prior to testing. For long-term storage, specimens may be frozen and stored below -20°C. Frozen specimens should be thawed and mixed before testing.

MATERIALS

Materials Provided

- Test dip card
- Package insert

Materials Required but Not Provided


- · Specimen collection container
- Timer

DIRECTIONS FOR USE

Allow the test device, and urine specimen to come to room temperature [15-30°C (59-86°F)] prior to testing.

- 1) Remove the test device from the foil pouch.
- 2) Remove the cap from the test device. Label the device with patient or control identifications.
- 3) Immerse the absorbent tip into the urine sample for 10-15 seconds. Urine sample should not touch the plastic device.
- 4) Replace the cap over the absorbent tip and lay the device flatly on a non-absorptive clean surface.
- 5) Read results at 5 minutes.

DO NOT INTERPRET RESULT AFTER 10 MINUTES.

INTERPRETATION OF RESULTS

(Please refer to the illustration above)

NEGATIVE: * **Two lines appear**. One red line should be in the control region (C), and another apparent red or pink line should be in the test region (T). This negative result indicates that the Xylazine concentration is below the detectable level (50 ng/mL).

*NOTE: The shade of red in the test line region (T) may vary, but it should be considered negative whenever there is even a faint pink line.

POSITIVE: One red line appears in the control region (C). No line appears in the test region (T). This positive result indicates that the Xylazine concentration exceeds the detectable level (50 ng/mL).

INVALID: Control line fails to appear. Insufficient specimen volume or incorrect procedural techniques are the most likely reasons for control line failure. Review the procedure and repeat the test using a new test dip card. If the problem persists, discontinue using the lot immediately and contact your local distributor.

QUALITY CONTROL

A procedural control is included in the test. A red line appearing in the control region (C) is considered an internal procedural control. It confirms sufficient specimen volume, adequate membrane wicking and correct procedural technique.

Control standards are not supplied with this kit; however, it is recommended that positive and negative controls be tested as good laboratory testing practice to confirm the test procedure and to verify proper test performance.

LIMITATIONS

- The Xylazine Test (Urine) Dip Card provides only a qualitative, preliminary analytical result. A secondary analytical method must be used to obtain a confirmed result. Gas chromatography/mass spectrometry (GC/ MS) is the preferred confirmatory method.^{4,5}
- 2. It is possible that technical or procedural errors, as well as other interfering substances in the urine specimen may cause erroneous results.
- 3. Adulterants, such as bleach and/or alum, in urine specimens may produce erroneous results regardless of the analytical method used. If adulteration is suspected, the test should be repeated with another urine specimen.
- 4. A positive result indicates presence of the drug or its metabolites but does not indicate level of intoxication, administration route or concentration in urine.
- 5. A negative result may not necessarily indicate drug-free urine. Negative results can be obtained when drug is present but below the cutoff level of the test.
- 6. Test does not distinguish between drugs of abuse and certain medications.

PERFORMANCE CHARACTERISTICS

Reproducibility

Reproducibility studies were carried out using commercially available stork solutions of the drug analytes listed. Dilutions were made from the stork solution of each drug to the concentrations specified in the following tables. The results are listed in the following tables.

	Xylazine conc.(ng/mL)	Total number of Determinations	Result	Precision	
	No Drug present	40	40 40 negative		
ſ	25	40	40 negative	>99%	
ſ	75	40	40 positive	>99%	
ſ	100	40	40 positive	>99%	

Analytical Sensitivity

A drug-free urine pool was spiked with drugs to the concentrations at \pm 50% cut-off and \pm 25% cut-off. The results are summarized below.

XYL	XYL Percent of		Visual Result		
Concentration (ng/mL)	Cut-off	n	Negative	Positive	
0	0	30	30	0	
25	-50%	30	30	0	
37.5	-25%	30	30	0	
50	Cut-off	30	12	18	
62.5	+25%	30	0	30	
75	+50%	30	0	30	

Analytical Specificity

4F-ABUTINACA

Enalapril Maleate

Noscapine

The following table lists the concentration of compounds (ng/mL) that were detected positive in urine by The Xylazine Test (Urine) Dip Card at a read time of 5 minutes.

Drug	Concentration (ng/ml)
Xylazine	50
4-Hydroxy xylazine	50
±MBDB HCL	25,000
Clonidine	25,000
Butylone Hcl	780
N-Acetylprocainamide	70,000

Effect of Urinary Specific Gravity

Twelve (12) urine samples of normal, high, and low specific gravity ranges 1.000 to 1.035 were spiked with drugs at 50% below and 50% above cut-off levels respectively. The Xylazine Test (Urine) Dip Card was tested in duplicate using ten drug-free urine and spiked urine samples. The results demonstrate that varying ranges of urinary specific gravity do not affect the test results.

Effect of Urinary pH

The pH of an aliquoted negative urine pool was adjusted to pH ranges of 4.00 to 9.00 in 1 pH unit increment and spiked with the target drug at 50% below and 50% above cut-off levels. The spiked, pH-adjusted urine was tested with the Xylazine Test (Urine) Dip Card. The results demonstrate that varying ranges of pH do not interfere with the performance of the test.

Cross-Reactivity

A study was conducted to determine the cross-reactivity of the test with compounds in either drug-free urine or Xylazine positive urine. The following compounds show no cross-reactivity when tested with the Xylazine Test (Urine) Dip Card at a concentration of 100 μg/mL.

Non-Cross-Reacting Compounds

Citalopram HBr L-Thyroxine y-aminobutyric acid (±)-Octopamine hydrochloride (-)-11-nor-9-carboxy-delta	Dexamethasone acetate Dextromethorphan Diazepam Diclofenac sodium Dicyclomine	morphine Mosapride Citrate Nalidixic acid Nalorphine Naloxone hydrochloride
(-)-Cotinine (±)-Epinephrine hydrochloride	Diethylstilbestrol Diflunisal	Naltrexone Hydrochloride Naproxen
(±)-Methamphetamine (±)-N'-Nitrosonornicotine (±)-Nornicotine (1R,2S)-(-)-Ephedrine HCI (R,S)-Norcotinine (S)-(-)-Nicotine-d3 (S)-N-Nitrosoanabasine	Dihydrocodeine HCI Diltiazem Dimenhydrinate Diphenhydramine HCI Dirithromycin Disopyramide	Narcotine N-Benzylisopropylamine Nicotinamide Nicotinic acid Nifedipine Nimodipine
(NAB) (S)-N-Nitrosoanatabine (t)-methadane ±MDEA 1-Adamantanamine hydrochloride 2-Phenylethylamine hydrochloride 3,4-Methylenedioxypyroval erone HCI	Domperidone Dopamine Hydrochlorid Doxylamine succinate Droperidol Duloxetine Ecgonine Ecgonine methyl Esten	Nitazene Norbuprenorphine Nordoxepin hydrochloride Norethindrone Norfloxacin Normorphine Norsertraline -13C6 HCI
4CN-CUMYL-BUTINACA	EMDP HCI	Nortrptyline Hcl

4F-ABUTINACA	Enalapril Maleate	Noscapine	Cannabidiol	JWH-073 4-Hydroxybutyl	Ranitidine
4F-MDMB-BUTICA	Enoxacin	Ofloxacin	Captopril	JWH-122 5- Hydroxypentyl	Rifampicin
5.5-Diphenylhydantoin	Erythromycin	O-Hydroxyhippuric acid		meabolite JWH-210 5-Hydroxypentyl	·
5F-ADBICA	Esomeprazole Magnesium	Olanzapine	Carbamazepine	meabolite	Risperidone
5F-EMB-PICA	EStrone	Omeprazole	Carisoprodd	JWH-250	S(-)Cathinone
5F-MDMB-PICA	Ethopropazine hydrochloride	Ondansetro	Cefaclor	4-Hydroxypentyl JWH-250 5-Hydroxypeentyl	S(+)methamphetamine
5-Hydroxytryptamine	Ethylmorphine	Oxalic acid	Cefadroxil	metabolite Ketamina	
6-MAM	Ethylone	Oxazepam		Ketamine	Salbutamol
7-beta-Estradiol	Ethyl-p-aminobenzoate	Oxolinic acid	Cefalexin	Ketoconazole	Salicylic
8-Chloro Caffeine	Fenofibrate	Oxycodone	Cefixime	Ketoprofen	S-Doxylamine
AB-PINACA	Fenoprofen	Oxymorphone	Cefoperazone sodium	Kynurenic	Serotonin
4-Hydroxypentyl metabolite	Fexofenadine	•	Cefuroxime Axetil	Lactose	Sertraline HCI
Acetaminophen	Hydrochloride	OXYPHENBUTAZONE	Cephalexin	Lamotrigine	Sildenafil
Acetylsalcylic	Fluconazole	Paclitaxel	Cephradine	Lansoprazole	Simvastatin
Acyclovir	Fluoxetine hydrochloride	p-Aminobenzoic	Chloramphenicol	Levetiracetam	Sodium Valproate
ADB-4en-PINACA	folic acid	Paroxetine	Chloroquine diphosphate salt	Levofloxacin Hydrochloride	Spice Cannabinoid Mix
Albumin	FUB-144	Penfluridol	Chlorothiazide	Levonorgestrel	Spice Cannabinoid Mix 2
Amikacin	Furosemide	Penicillin	Chlorpromazine	Levorphanol tartrate	Spice Cannabinoid Mix 3
Amiloride	Gabapentin	Penicillin G Sodium Salt	hydrochloride	·	·
Amiodarone Hydrochlorid	Gatifloxacin	Pentachlorophenol	Cholesterol	Levothyroxine Sodium	Spironolactone
Amitriptyline	Gemfibrozil	Pentobarbital	Cimetidine	Lignocaine	Sulfamonomethoxine
Amlodipine besylate	Gentamicin	Perphenazine	Citalopram hydrobromide	Lisinopril	Tadalafil
Amoxicillin	Gentisic	phenethylamine	Citicoline Sodium	Lodeine	Telmisartan
Ampicillin	Glibenclamide	Phenobarbital	Clarithromycin	Lomefloxacin Hydrochloride	
APINACA (AKB-48)	Gliolozido	Phentermine	Cloethocarb	Loperamide hydrochloride	Theophylline
5-Hydroxypentyl metabolite			Clomipramine	Loratadine	Thiamine
Apomorphine hydrochloride	Glipizide	Phenytoin Sodium	Clomipramine	Lorazepam gluronide	Tolazamide
a-Pyrrolidnoraler phenore hcl	Glucose	p-Hydroxymethamphetamin e	Clopidogrel Bisulfate	Maprotiline HCI	Topiramate
Aripiprazole	Hemoglobin	Pioglitazone Hydrochlorid	Clopidogrel Hydrogen Sulfate	MDMA	Tramadel hcl
ascorbic acid	Herion	Piracetam	clorprenaline	MDMB-4en-PINACA	Trazodone HCL
Atenolol	Hydralazine	Prazosin hydrochloride	Clozapine	Meperidine	Triamterene
Atomoxetine hydrochloride	Hydrochlorothiazide	Prednisone	Cocaethylene	Metformin	Triazolam
Atorvastatin	Hydrocodone	Procainamide hydrochloride	Cocaethylene	Methaqualone	Trimethobenzamide
Atrazine	Hydrocortisone	Procaine hydrochloride	Cocaine	Methoearbm01	Hydrochloride Trimethoprim
Atropine	Ibuprofen	Promazine	Codeine	methoxyphenamine	Tryptamine
Atroscine	Icilin	Promethazine	Cortisone	Methylmorphinan	Tyramine hydrochloride
Azithromycin	Imipramine Hydrochloride	hydrochloride Propranolol Hydrochloride		Metoclopramide	•
Baclofen	Indapamide	Propylthiouracil	Creatuinine	hydrochloride	Ursodeoxycholic Acid Valproic Acid
	•	Pseudoephedrine	d I 3-4-MDA	Metoprolol	Venlafaxine
Benzocaine	Iproniazid	Hydrochloride	D L-Tryptophan	Metronidazole	hydrochlorid Verapamil
Benzoic acid	Isoproterenol hydrochloride	Pseudoephedrine(r)	D/L-Tyrosine	Midazolam	Verapamil hydrochloride
Benzoylecgonine	Isoproterenol-(+/-)	Pseudoephedrine(s)	Deoxycorticosterone	Mifepristone	Vitamin C Zomepirac
Berberine	Isosorbide Dinitrate	Quetiapine fumarate	Desalkyl futazepam	Minocycline	Zonisamide
Bilirubin	Isoxsuprine	quinidine	Desipramine HCI	mirtazapine	α-Hydroxyhippuric acid
Buprenorphine	JEH-018 5-Hydroxypentyl	Quinine	Desloratadine	Mitragynine	
Bupropion hydrochloride	JEH-018 N-(4-hydroxypentyl)	Quinine Monohydrochloride Dihydrate	Desloratadine Citrate Disodium	MMB-CHMICA	β-Estradiol R(-)Amphetamine
	metabolite JWH-018 (Spice	R(-)-Methamphetamine	deta-9-THC	Montelukast sodium	Clobazam
Bupropion HCI	Cannabinoid)	(levo-Methamphetamine)	6β-Naltrexol	Alprazolam	Hydrocodone
Buspirone HCI	JWH-019 5-Hydroxyhexyl	R-(-)-Phenylephrine HC	Bromazepam	Brompheniramine	Papaverine
Butalbital	JWH-01965-Hydroxyhexyl	R(+)-Methcathinone HCI	Cyclobenzaprine	Doxepin	Cholesterol
	metabolite JWH-073 (Spice	, ,	Mephedrone	Nitrazepam	Aspartame
cocaine Hcl		Rabeprazole sodium	Pregabalin	Diflunisal	

Cannabidiol

JWH-073 4-Hydroxybutyl Ranitidine

BIBLIOGRAPHY

- 1. GREENE, S.A. and THURMON, J.C. (1988), Xylazine a review of its pharmacology and use in veterinary medicine. Journal of Veterinary Pharmacology and Therapeutics, 11: 295-313.
- 2. Reyes, J.C., Negrón, J.L., Colón, H.M. et al. The Emerging of Xylazine as a New Drug of Abuse and its Health Consequences among Drug Users in Puerto Rico. J Urban Health 89, 519-526 (2012).
- 3. Baselt RC. Disposition of Toxic Drugs and Chemicals in Man. 2nd ed.Davis: Biomedical Publications; 1982.
- 4. Stewart DJ, Inaba T, Lucassen M, Kalow W. Clin. Pharmacol. Ther. April 1979; 25 ed: 464, 264-8.
- 5. Ambre J. J. Anal. Toxicol. 1985; 9:241.

Revision Date: 2023-09-14